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ABSTRACT

The Global Ensemble Forecasting System (GEFS) is being extended from 16 to 35 days to cover the

subseasonal period, bridging weather and seasonal forecasts. In this study, the impact of SST forcing on the

extended-range land-only global 2-m temperature, continental United States (CONUS) accumulated pre-

cipitation, and MJO skill are explored with version 11 of the GEFS (GEFSv11) under various SST forcing

configurations. The configurations consist of 1) the operational GEFS 90-day e-folding time of the observed

real-time global SST (RTG-SST) anomaly relaxed to climatology, 2) an optimal AMIP configuration using

the observed daily RTG-SST analysis, 3) a two-tier approach using the CFSv2-predicted daily SST, and 4) a

two-tier approach using bias-corrected CFSv2-predicted SST, updated every 24 h. The experimental period

covers the fall of 2013 and the winter of 2013/14. The results indicate that there are small differences in the ranked

probability skill scores (RPSSs) between the various SST forcing experiments. The improvements in forecast skill of

the Northern Hemisphere 2-m temperature and precipitation for weeks 3 and 4 are marginal, especially for North

America. The bias-corrected CFSv2-predicted SST experiment generally delivers superior performance with sta-

tistically significant improvement in spatially and temporally aggregated 2-m temperature RPSSs over North

America. Improved representation of the SST forcing (AMIP) increased the forecast skill for MJO indices up

through week 2, but there is no significant improvement of theMJO forecast skill for weeks 3 and 4. These results

are obtained over a short period with weak MJO activity and are also subject to internal model weaknesses in

representing the MJO. Additional studies covering longer periods with upgraded model physics are warranted.

1. Introduction

Recently, the need for numerical guidance covering the

weeks 3 and 4 period has been increasing, driven primarily

by economic requirements to support decision-makers (e.g.,

themanagement of water supplies) and for preparedness to

changes in climate. TheNationalOceanic andAtmospheric

Administration (NOAA) is accelerating its efforts to im-

prove its numerical guidance and prediction capability for

the extended range: the weeks 3 and 4 period that bridges

the gap between weather and climate. Covering the

extended-range period will enable NOAA to provide

seamless numerical guidance to the public, protecting life

and property.

Global efforts have been pursued to provide

extended-range forecast guidance to the public, helpingCorresponding author: Yuejian Zhu, yuejian.zhu@noaa.gov
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to reduce the effects of high-impact weather and ex-

treme events. One such effort is the Subseasonal to

Seasonal (S2S) project, a legacy project of The Ob-

serving System Research and Predictability Experiment

(THORPEX). This project was endorsed in 2012 by the

World Meteorological Organization’s (WMO) World

Weather Research Program (WWRP) and World Cli-

mate Research Program (WCRP; Vitart et al. 2017). In

the United States, NOAA is pursuing parallel efforts

to ‘‘develop an intraseasonal to interannual prediction

system that builds on the currently experimental real-

time National Multi-Model Ensemble system and in-

corporates advances in statistical methodologies and

forecast initialization’’ to provide weeks 3 and 4 fore-

cast guidance (NOAA 5-yr research and development

plan: 2013–17; http://nrc.noaa.gov/CouncilProducts/

ResearchPlans/5YearRDPlan/NOAA5YRPHome.aspx).

Since 2011, the NationalWeather Service (NWS) has been

furthering the Weather-Ready Nation (WRN) strategic

plan to ‘‘create a seamless suite of forecasts that look out

beyond twoweeks to support response andpreparedness to

changes in climate that incorporate research advances from

within NOAA and other partners, including the com-

mercial weather and climate industries’’ (Weather-Ready

Nation—NWS Strategic Plan 2011, http://www.nws.noaa.

gov/com/weatherreadynation/files/strategic_plan.pdf).

Past studies using dynamical models, statistical models,

empirical methods, and other tools have examined the

weeks 3 and 4, subseasonal, and/or intraseasonal time

periods. The seminal studies by Lorenz (1969a,b, 1982)

set the foundation for understanding predictability.

Subsequent studies attempted to find and explain key

phenomena that impact predictability across temporal

scales. In the tropics, the Madden–Julian oscillation

(MJO; Madden and Julian 1971, 1972) was found to be

a key phenomenon for extended-range prediction due to

its 40–50-day oscillation time scale. In the Northern

Hemisphere (NH), the Pacific–North American (PNA)

and North Atlantic Oscillation (NAO) patterns in the

mid- to high latitudes have been found to be sources of

extended-range predictability (Wallace and Gutzler

1981; Barnston and Livezey 1987). In particular, specific

blocking patterns can be identified in the extended range

that can result in drought and heat waves in summer and

produce conditions conducive for severe weather in the

winter (Rex 1950). Several notable studies have ex-

plored various means to increase forecast skill on the

subseasonal-to-seasonal time scales, with emphasis

placed on high-impact weather events (Kirtman

et al. 2014).

The studies using numerical models have focused on

the scientific issues and relationships of various key

phenomena, including the impact of SSTs and MJO

(Pegion and Sardeshmukh 2011; Fu et al. 2013; Xiang

et al. 2015), teleconnections (e.g., PNA, NAO; Van den

Dool et al. 2000; Chen and Van den Dool 2003), mon-

soons (Adams and Comrie 1997; Chang et al. 2000; Luo

et al. 2016), extreme rainfall events (Luo et al. 2016), sea

ice (Hunke et al. 2010), and the interaction of tropo-

spheric and stratospheric processes (Lindzen 1987).

These studies raise important issues for extended-range

numerical model prediction such as the relationship

FIG. 1. Average anomaly correlation by lead day for 500-hPa geopotential heights over the

NH covering the period of 1 Sep 2013–28 Feb 2014 for the deterministic GFS (blue) and the

GEFS ensemble mean (red).
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between model resolution and physical parameteriza-

tions for coupled ocean–atmosphere models, initializa-

tion strategies for subseasonal prediction, ensemble

generation, model systematic errors, and the represen-

tation of forecast uncertainties. Model systematic errors

continue to plague medium- and extended-range fore-

casts, but retrospective forecasts can be implemented to

reduce their impact. The additional resources required

for retrospective forecasts make it more expensive to

implement a numerical modeling system for extended-

range prediction.

Operational global numerical guidance forweeks 3 and 4

and monthly predictions are available from several opera-

tional forecasting centers. NOAA’s National Centers for

Environmental Prediction (NCEP) Climate Forecasting

System (CFS) version 2 (CFSv2) is a coupled (ocean, sea

ice, land, and atmosphere) model (Saha et al. 2006, 2010,

2014) that combines four forecasts initialized four times

daily into a daily 16-member time-lagged ensemble in-

tegrated out to 45 days with retrospective hindcasts for bias

correction. The European Centre for Medium-Range

Weather Forecasts (ECMWF) runs a 51-member global

coupled (ocean, sea ice, land, and atmosphere) Ensemble

Prediction System (EPS; Vitart et al. 2014) out to 46 days.

The ECMWFEPS is initialized twice per week with a real-

time hindcast for forecast calibration. Recently, Environ-

ment Canada (now known as Environment and Climate

Change Canada) extended their 21-ensemble-member

uncoupled Global Ensemble Prediction System (GEPS;

Côté et al. 1998; Buizza et al. 2005) to 32 days once per

week with a real-time reforecast (or hindcast) for forecast

calibration.

The NCEP Global Ensemble Forecast system (GEFS)

has been designed to incorporate forecast uncertainty,

which results in improved forecast reliability (Toth and

Kalnay 1993, 1997; Buizza et al. 2005; Wei et al. 2008;

FIG. 2. Hovmöller diagrams of area-average SST (K) over the 158S–158Nbands for the (a) RTG analysis, (b) CTL initial conditions, and

(c) CFS and (d) CFS_BC SST forecast at lead day 20. The three panels on the right verify with the dates of the RTG on the left. At the top,

the time–longitude correlation is given for each of the SST forecast panels.
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Ma et al. 2014) in the medium-range. In recent

years, GEFS has yielded excellent day-to-day forecast

skill. The GEFS ensemble mean has consistently dem-

onstrated similar or improved forecast skill compared to

the deterministic Global Forecast System (GFS), which is

pronounced at longer lead times. The NH 500-hPa geo-

potential height anomaly correlation out to 16 days for

the experimental period in this manuscript (fall 2013 and

winter 2013/14) is shown in Fig. 1. Unlike the GFS,

the GEFS produces a probabilistic forecast, providing a

measure of forecast uncertainty (Toth et al. 2001; Zhu

et al. 2002; Zhu 2005) that can aid in forecasting extreme

weather events (Guan and Zhu 2016). Extending the

GEFS (currently run to 16 days) to cover the weeks 3 and

4 period provides additional benefits over the CFSv2,

including a more frequent model upgrade cycle, higher

model resolution, state-of-the-art flow-dependent initial

perturbations from a hybrid four-dimensional ensemble-

variational data assimilation (4DEnVar) system, stochas-

tic physics, and larger ensemblemembership (84members

for every 24-h cycle), all providing an improved sampling

of forecast uncertainty.

In this study, the operational GEFS v11 configuration

is extended to 35 days, and the forecast skill is evaluated

(Melhauser et al. 2016). Various SST forcing experi-

ments are performed to examine the impact of SST

forcing on the extended-range forecast skill of global

2-m temperature, accumulated precipitation over the

continental United States (CONUS), and MJO indices.

Section 2 describes the GEFS configuration for the SST

forcing experiments, experiment forecast period, and

aspects of the verification methodology. Section 3 pro-

vides results and offers discussion of the forecast skill for

global 2-m temperature, CONUS accumulated pre-

cipitation, and MJO indices. Section 4 provides con-

cluding remarks and future steps.

2. Methodology

a. Operational NCEP GEFS

The current operational configuration of GEFS uses

version 12 of the GFS Global Spectral Model (GSM

v12.0.0) for integration four times per day (0000, 0600,

1200, and 1800 UTC) out to 16 days (Sela 1980; Han and

Pan 2011; Han et al. 2016). For days 0–8 the GEFS has a

spectral resolution of TL574 (semi Lagrangian with a

linear grid; approximately 34 km) with 64 hybrid verti-

cal levels and the horizontal resolution is reduced

for days 8–16 to TL384 (approximately 52 km). The

20-member ensemble initial condition perturbations are

selected from the operational hybrid NCEP Global

FIG. 3. Spatial distributions of (left) 5-day running mean RMS error and (right) ensemble spread of 500-hPa geopotential heights (gpm)

for CTL over the 6-month experiment period for lead days (a),(b) 18 and (c), (d) 25.
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Data Assimilation System (GDAS) 80-member en-

semble Kalman filter (EnKF; Wu et al. 2002; Whitaker

et al. 2008; Kleist et al. 2009; X. Wang et al. 2013; Kleist

and Ide 2015; Zhou et al. 2016, 2017). If tropical cyclones

(TCs) are present in the initial conditions, TC pertur-

bations are calculated after TCs are separated from the

environment (Kurihara et al. 1995) and are relocated to

the same location (Liu et al. 2006). GEFS accounts for

model errors by perturbing the total tendencies using

the stochastic total tendency perturbation scheme

(STTP; Hou et al. 2008). The GEFS has the same GFS

SST forcing, which is initialized with the real-time

global (RTG) analysis and damped to climatology

(90-day e-folding time) during model integration. The

sea ice concentration is initialized from the daily 0000

UTC sea ice and snow analysis from the Interactive

Multisensor Snow and Ice Mapping System (Ramsay

1998) and held constant throughout the model in-

tegration. (Additional information on GSM v12.0.0

settings used in the operational GEFS is available online:

http://www.emc.ncep.noaa.gov/GFS/impl.php.) For this

study, the operational GEFS configuration is modified as

follows: 1) the forecast is extended to 35 days with the

horizontal resolution reduced to TL254 (approximately

78km) for 16–35 days, 2) the SST is updated with various

SST forcing schemes, and 3) the forecast is only initialized

once per day at 0000 UTC because of resource constraints.

b. SST forcing experiments

The SST configurations consist of the operational

GEFS 90-day e-folding time of the observed RTG-SST

anomaly to climatology (CTL), an optimal Atmospheric

Model Intercomparison Project (AMIP) configuration

using the observedRTG-SST analysis updated every 24h

during model integration (RTG), a two-tier approach

using theCFSv2-predicted SSTupdated every 24h during

model integration (CFS), and a two-tier approach using

bias-corrected CFSv2-predicted SST updated every 24h

during model integration (CFS_BC). Detailed formula-

tions for CTL and CFS_BC can be found in appendix A.

The operational GEFS is an uncoupled system with

the SST prescribed using NCEP’s RTG-SST analysis

persisted and damped to climatology during the fore-

cast. Model boundary conditions, including the un-

derlying SST, are known to influence prediction skill in

the extended range. Therefore, it is important to assess

the impact of SST forcing on extended-range forecast

skill before fully coupling the GEFS to an oceanmodel.

We show the area-average SST over the 158S–158N
band for the RTG (Fig. 2a) analysis and lead day 20

forecasts valid at the corresponding analysis verifica-

tion date for CTL (Fig. 2b), CFS (Fig. 2c), and CFS_BC

(Fig. 2d). Comparing the two-tiered CFS experiment

to CTL, CFS provides additional multiscale in-

formation. Removing systematic biases in the CFS_BC

experiment (Fig. 2d) improves the correlation be-

tween the RTG analysis and the lead day 20 forecast

output.

c. Experiment period

All experiments in this study span the fall of 2013 and

winter of 2013/14 and are initialized every 24h starting on

1 September 2013 and ending 28 February 2014. For 2-m

temperature and accumulated precipitation, only the lead

times corresponding to 0000UTC(e.g., 24, 48, 72h, etc.) are

verified to control for diurnal variability. Over the experi-

ment period, the MJO was weak or nonexistent [Climate

Prediction Center (CPC); http://www.cpc.ncep.noaa.gov/

products/precip/CWlink/MJO/whindex.shtml] and ENSO-

neutral conditions persisted (Earth System Research Lab-

oratory; http://www.esrl.noaa.gov/psd/enso/mei).

For the fall of 2013, parts of the CONUS including the

northern Rockies and northern plains experienced

wetter-than-normal conditions, with precipitation totals

in the northern plains states, Colorado, and NewMexico

ranking within their 10 wettest (since 1895). California

remained extremely dry, with autumn 2013 ranking its

10th driest (since 1895), with below-normal precipitation

also observed in the Southeast and Northeast. Eurasia

experienced above-normal temperatures, having its re-

cord warmest November and December (since 1900).

Over Europe, the beginning of fall was also anomalously

warm, with Finland, Spain, and Norway experiencing

above-normal temperatures for September (National

Climatic Data Center Climate Global Analysis; https://

www.ncdc.noaa.gov/sotc/global).

For the winter of 2013/14, the Northern Hemisphere

was plagued with persistent dips in the jet stream that

brought cold air into North America and central Russia

and warm air into northern Europe. Environment Canada

reported its coldest winter since 1996 and coldest

November–March (since 1948). Across the CONUS,

below-average temperatures were experienced east of the

Rockies, but California had its warmest winter on record

and above-normal conditions were experienced by the

surrounding southwestern states.Over thewesternUnited

States and the Great Plains, drier-than-normal conditions

persisted (National Climatic Data Center Climate Global

Analysis: https://www.ncdc.noaa.gov/sotc/global).

d. Verification procedure

1) RPSS: 2-M TEMPERATUREANDACCUMULATED

PRECIPITATION

The forecast skill for 2-m temperature and accumu-

lated precipitation are evaluated using a tercile (below
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normal, normal, or above normal) ranked probability

skill score (RPSS; e.g., Wilks 2011); see appendix B for

additional details. The 2-m temperature is verified for

land-only cases against the 0000 UTC GDAS analysis,

and the accumulated precipitation is verified for land-

only cases against the 0000 UTCNCEP climatologically

calibrated precipitation analysis (CCPA; Hou et al.

2014). The GEFS 2-m temperature is averaged and the

accumulated precipitation accumulated over the lead

times of interest (week 2, days 8–14; weeks 3 and 4, days

15–28); the results are verified against the corresponding

GDAS and CCPA data averaged or accumulated over

the same lead times. Different methods and period

lengths can be defined, which can have a direct impact

on forecast skill; generally, longer averaging periods

produce higher RPSS values (not shown). Week 2 and

weeks 3 and 4 were chosen in this investigation to match

the operational CPC week 2 and experimental weeks

3 and 4 forecasts.

2) MJO SKILL SCORE

In this study, the MJO is evaluated using the tra-

ditional real-time multivariate MJO (i.e., RMM)

index [the Wheeler–Hendon index (WH index);

Wheeler and Hendon (2004); Gottschalck et al.

(2010)]. The MJO forecast skill is defined as the bi-

variate anomaly correlation between the analysis

and forecast RMM1 and RMM2 over the fall of 2013

and winter of 2013/14, calculated at each lead time.

The GEFS ensemble mean outgoing longwave radi-

ation (OLR), 850-hPa u-wind component (U850),

and 200-hPa u-wind component (U200) are verified

against the same variables from GDAS. The long-

term climatology is calculated from the NCEP/

FIG. 4. Spatial distribution of RMS error ofU200 (m s21) for CTL over the 6-month experiment

for lead days (a) 18 and (b) 25.
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NCAR reanalysis (R-1; http://www.esrl.noaa.gov/psd/data/

gridded/data.ncep.reanalysis.html) for U200 and U850

and from the NCAR Interpolated Outgoing Longwave

Radiation dataset (http://www.esrl.noaa.gov/psd/data/

gridded/data.interp_OLR.html; Liebmann and Smith

1996) for the OLR, both for the period 1981–2010. The

long-term mean and average of the previous 120 days are

removed from the climatology to eliminate long-term

trends and seasonal variability.

3. Results and discussion

An ensemble prediction system is performing well if it

can produce an accurate estimate of its lead-time-

specific forecast errors (error) through its ensemble

dispersion (spread). If this is the case, the benefit of an

ensemble predicting its own forecast errors can be uti-

lized. The ensemble root-mean-square (RMS) error and

spread for GEFS 500-hPa geopotential heights over the

fall of 2013 and the winter of 2013/14 for lead day 18

(Figs. 3a,b) and lead day 25 (Figs. 3c,d) generally sup-

ports the notion thatGEFS is performingwell during the

weeks 3 and 4 period, although deviations occur for

other variables, lead times, and locations. For both lead

days 18 and 25, the spread and error over the NH polar

latitudes show similar spatial patterns and magnitudes,

although the results are slightly underdispersive over the

NH storm tracks (Buizza et al. 2005). In the Southern

Hemisphere (SH), the GEFS appears to be slightly

overdispersive over a large swath of the SHArctic Circle.

Locating the sources of uncertainty in the large-scale

circulation is a necessary step toward an accurate fore-

cast for the weeks 3 and 4 period. During the fall–winter

in the NH, the subtropical jet is one of the major large-

scale circulations that modulate North American (NA)

weather. As such, demonstrating the uncertainty asso-

ciated with the upper-level circulation is helpful for a

model developer when evaluating jet stream forecasts.

The 6-month experiment period average of 200-hPa

RMS error (Fig. 4) shows a similar magnitude and spa-

tial distribution between lead days 18 and 25. As ex-

pected, the largest errors reside in the NH storm tracks

given the time frame of the experiment period. Most of

the larger errors reside in the midlatitudes south of 308S
and north of 308N. This suggests that for weeks 3 and 4

forecasts, improving the skill of the large-scale circula-

tion, especially over the subtropical jet region, should

not be ignored.

a. 2-m temperature forecast skill

Over the experiment period, the global land-only 2-m

temperatureRPSS is regionally and lead time dependent.

The tropics (TR) have the highest RPSSs for both week 2

(Fig. 5a) and weeks 3 and 4 (Fig. 5b) with NA having the

lowest. Comparing between week 2 and weeks 3 and 4,

the RPSSs remain similar for the tropics and SH, with the

NH and NA dropping ;0.1–0.3. Within each region, the

levels of forecast skill for the SST forcing experiments are

generally statistically indifferent fromCTL for both week

2 and weeks 3 and 4. RTG, CFS, and CFS_BC show a

statistically significant improvement duringweeks 3 and 4

over NA with RTG showing statistically significant im-

provements over TR. It is interesting that RTG does not

have a more robust improvement compared to the other

experiments, given this experiment is being forced with

the observed SST forcing.Duringweeks 3 and 4 overNA,

CFS and CFS_BC actually outperform the RTG experi-

ment in terms of RPSS. It should be restated that the

period of this experiment does occur over an inactive

MJO period with ENSO neutral conditions; thus, the

tropical forcing and correlations with global weather may

have a low signal-to-noise ratio.

The global weeks 3 and 4 spatial 2-m temperature

RPSS score for CTL (Fig. 6a) indicates the highest skill

over land extending from the western Sahara into the

FIG. 5. RPSS forCTL (black),RTG(red),CFS (green), andCFS_BC

(blue) calculated for (top) week 2 and (bottom) weeks 3 and 4 for (a),

(c) 2-mtemperatureand (b),(d)accumulatedprecipitationaveragedover

the 6-month experiment period. Asterisks beneath the respective ex-

periment column scores indicate that the difference of that experiment

from CTL is statistically significant at the 95% confidence level.
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Middle East and northern China. Generally, the lowest

relative skill is found over Europe, central South

America, and the northern portions of Asia. Comparing

RTG to CTL (Fig. 6b), no gridpoint statistical signifi-

cance is found anywhere over land, but some general

hints at coherent areas of improvement in RPSS can be

found over central South America, North America, and

Australia. Differences over land can also be found

comparing CTL to the CFS (Fig. 6c) and CFS_BC

(Fig. 6d) experiments. In general, the experiments

forced with the CFSv2 (CFS and CFS_BC) hinted at

larger improvements in the same areas except for a

generally coherent degradation over north-central Asia.

Over the ocean (not shown), the CFS experiment shows

degradation in RPSS over the northern high latitudes.

Along the western portion of South America and ex-

tending to the eastern equatorial region, applying a bias

correction in CFS_BC significantly improves the deg-

radations found in CFS.

Awarm bias exists in CTL across central NA (Fig. 7a),

extending north into Greenland. This suggests the

GEFS had a hard time capturing the unusually cold

conditions across the central and eastern United States

and Canada that were observed during the experiment

period. This warm bias is reduced in RTG (Fig. 7b), CFS

(Fig. 7c), and CFS_BC (Fig. 7d), and corresponds to

improved RPSSs in central NA. Both CFS and CFS_BC

indicate large regions of the northern high latitudes that

were cooler than CTL, which may be partially explained

by differences in how sea ice is handled in the CFS SST

forcing compared to climatological SST forcing in CTL.

Specifically comparing CFS (Fig. 7c) and CFS_BC

(Fig. 7d), the bias correction in CFS_BC does little to

reduce the 2-m temperature forecast bias over the

northern latitudes, indicating a clear systematic differ-

ence between dynamically evolving sea ice and pre-

scribing the SST. However, the CFS_BC clearly reduces

the bias over the western United States extending into

northern Mexico, improving the RPSS (Fig. 6d). Addi-

tionally, CFS_BC significantly reduces the warm bias in

CFS along the west coast and southern portion of South

America. Focusing on Asia, a cold bias in CFS is present

over Siberia. This is not present in CFS_BC, with it

being slightly warmer in this area.

The weeks 3 and 4 time frame falls within the gray

zone between weather and climate; thus, one way to

FIG. 6. Land-only 2.58 global 2-m temperatureRPSSs averaged over the 6-month experimental period for weeks 3 and 4 for (a) CTL and

the difference between (b) RTG, (c) CFS, and (d) CFS_BC andCTL.Hatching in (b)–(d) indicates the difference is statistically significant

at the 95% confidence level.
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highlight the subseasonal time scale and increase the

prediction capability is to remove the short-term noise

associated with the synoptic weather using a 5-day

running mean. The 5-day running mean RMS error

for 2-m temperature shows the largest error over

central and western NA and central Siberia, extending

acrossAsia (Fig. 8a).RTG(Fig. 8b) reduces the error across

NA, while increasing the error over Siberia and across

continental Asia. CFS (Fig. 8c) has areas of error reduction

around theGreat Lakes inNA, but areas of increased error

are found along the West Coast and extending into Alaska

and across the central United States. Similar large increases

in error were found across Siberia. Interestingly, CFS_BC

(Fig. 8d) has an almost opposite impact across NA andNH,

with increased error across central NA and a reduction

in error across Siberia.

While RMS error provides the forecast error, the

signal-to-noise ratio (SNR, which is defined as the en-

semble mean divided by the ensemble spread for each

model grid) indicates the predictability for a certain

forecast variable (B. Wang et al. 2013; Zhang et al.

2016). For 2-m temperature, the SNRmainly occurs over

the tropical regions (Fig. 9). Over the western CONUS,

there is higher predictability compared with the central

United States, but overall the predictability is low. It

should be noted the GEFS is underdispersive in 2-m

temperature, especially in the tropics.

The small improvement in 2-m temperature RPSS in

RTG over land using a ‘‘perfect’’ SST setup indicates

there are deficiencies that need to be addressed in the

forecast model. The GEFS in its current configuration

may not effectively propagate the information con-

tained in the tropical SSTs to land regions around the

globe. This is not simply an issue of low forecast skill

over weeks 3 and 4 (Fig. 5c), as this was also evident

during week 1 (not shown) and week 2 (Fig. 5a). It

should be noted again that the experiment period is only

6 months and occurred during a period of weak MJOs

and ENSO-neutral conditions. It is interesting that

CFS_BC performs as well or better than RTG (statisti-

cally significant over NA) for the 2-m temperature

RPSS. Further investigation needs to be performed to

determine if this trend holds over other forecast vari-

ables and verification metrics.

b. Accumulated precipitation forecast skill: CONUS

Over the fall of 2013 and the winter of 2013/14, the

CONUS accumulated precipitation RPSS shows no

FIG. 7. Land-only 2.58 global 2-m temperature bias (forecast2 analysis) (K) averaged over the 6-month experiment period for weeks 3 and

4 for (a) CTL and the difference between (b) RTG, (c) CFS, and (d) CFS_BC and CTL.
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statistically significant difference between CTL and

RTG, CFS, or CFS_BC for week 1 (not shown), week 2

(Fig. 5b), or weeks 3 and 4 (Fig. 5d). Themagnitude of the

RPSS falls off drastically after week 1—approximately 0.55

at lead day 1 and 0 at lead day 7 (die-off curves not

shown)—leveling off around approximately 0 (no skill) for

all experiments for the extended period. The aggregate

accumulated week 2 RPSS is slightly higher than weeks 3

and4, but overall the results indicate very little skill with the

current model configurations, regardless of SST forcing.

FIG. 8. Land-only 2.582-m temperature RMS error (K) for (a) CTL and the difference between (b) RTG, (c) CFS, and (d) CFS_BC and

CTL, averaged over the 6-month experiment period.

FIG. 9. The 2-m temperature SNR for CTL averaged over weeks 3 and 4.
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The distribution of the weeks 3 and 4 accumulated pre-

cipitation RPSS for CTL (Fig. 10) indicates the highest skill

is over the northern plains with small positive or even

negative skill across theSouthwest, south-central plains, and

Southeast. Comparing the RPSS differences fromCTL, the

RTG and CFS (SST forcing) experiments (Figs. 10c,d)

generally show higher relative skill over the central plains

into the Great Lakes, but less skill over northwest Texas.

All SST forcing experiments have reduced RPSSs in the

Southeast. Thebias partially explains theRPSSdistribution,

with CTL too dry over the south-central plains extending

into the Mississippi River valley and slightly too wet over

the northern plains and far Southeast (Fig. 11a). There are

coherent spatial bias differences between RTG (Fig. 11b),

CFS (Fig. 11c), and CFS_BC (Fig. 11d) and the CTL, but

none is large enough in magnitude be statistically signifi-

cant. The RTG and CFS_BC experiments have a reduced

dry bias in coherent regions of the central and portions of

the eastern United States. The small differences in bias

between the SST forcing experiments suggests the system-

atic model errors from model parameterizations dominate

the biases over the extended period.

c. MJO forecast skill and evolution

The MJO is one of the dominant sources of pre-

dictability at the subseasonal time scale. As such, the

forecast skill of MJO is a keymetric when evaluating the

capability of operational models for subseasonal fore-

casts (Kim et al. 2014; Shelly et al. 2014; Ling et al. 2014;

Xiang et al. 2015). The MJO forecast skill in the oper-

ationalGEFS during the experimental period (Fig. 12) is

;14.6 days—defined as the lead time when the bivariate

anomaly correlation coefficient drops to 0.5. After week

2, MJO forecast skill quickly drops. Changing the pre-

scribed SST to be closer to the observations (RTG), the

MJO forecast skill was improved up to;2 days. For the

weeks 3 and 4 range, the most skillful SST forcing is

RTG with the CFS_BC being the most skillful scheme

that could be used in operations.

The MJO skill averaged for weeks 3 and 4 was im-

proved by ;10% (figure not shown) for CFS_BC. This

implies that the MJO prediction skill is related to the

accuracy of the representation of the SST, which is

consistent with other studies (e.g., Wang et al. 2015).

Therefore, without changing the model, it is found that

improving the SST results in an increase in MJO

forecast skill.

The strength and variability of the MJO index are sub-

ject to forecast errors that increase with lead time. Over

the experiment period, theMJO is predicted to be weaker

in September, from late November to mid-December

of 2013, and late January and late February 2014, but

FIG. 10. Spatial weeks 3 and 4 accumulated precipitation RPSS over the CONUS averaged over the 6-month experimental period for

(a) CTL and the difference between (b) RTG, (c) CFS, and (d) CFS_BC and CTL.
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stronger over all other periods (Fig. 13). The bias in

MJO strength was consistent across lead times. For

longer lead times (e.g., lead day 22), the forecast MJO

indices tend to become stronger in most verification

months except for December. Although the weeks 3

and 4 forecast MJO magnitude is generally too strong

and slightly out of phase, there are some periods when

GEFS performed well (e.g., from late November to

early December for lead day 14). The investigation of

this is left for future study.

4. Conclusions and future work

TheNCEPGEFS is being extended from 16 to 35 days

to cover the subseasonal forecast period. The impacts of

SST forcing on the extended-range land-only global 2-m

temperature, CONUS accumulated precipitation, and

MJO indices forecast skill were examined using various

SST forcing configurations. The SST configurations

consisted of 1) the operational GFS and GEFS 90-day

e-folding time of the observed RTG SST anomaly to

climatology; 2) an optimal AMIP configuration using

the observed RTG SST analysis updated every 24h; 3) a

two-tier approach using the CFSv2-predicted SST, up-

dated every 24h; and 4) a two-tier approach using bias-

corrected CFSv2-predicted SST, updated every 24h.

The experiments are carried out over a 6-month period

covering the fall and winter months of 2013–14. This

period was characterized by weak MJO events and

neutral ENSO conditions.

There was little improvement in land-only 2-m tem-

perature and accumulated precipitation forecasts over

the extended weeks 3 and 4 period. Forcing the GEFS

with an optimal SST did not show statistically sig-

nificant improvements. This indicates there are defi-

ciencies in the current GEFS configuration that need

to be addressed. For accumulated precipitation over

the CONUS, there are small differences in RPSS

between experiments during the weeks 3 and 4 period.

FIG. 11. Spatial weeks 3 and 4 accumulated precipitation bias (model 2 analysis) (mm) over the CONUS averaged over the 6-month

experimental period for (a) CTL and the difference between (b) RTG, (c) CFS, and (d) CFS_BC and CTL.

FIG. 12. MJO forecast skill (i.e., bivariate correlation between

ensemble mean forecast and analysis data) as a function of lead

time for the period 1 Sep 2013–28 Feb 2014. Climatology and

previous 120-day mean are removed from the forecast and analysis

data while calculating the RMMs.
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Additionally, there are small differences in bias between

the SST forcing experiments, which suggests that sys-

tematic model errors dominate the biases at the ex-

tended period with model boundary condition forcing

having a secondary impact.

It was found that the MJO forecast skill during the ex-

perimental period for the operational GEFS is;14.6 days.

Using amore realistic SST increased theMJOskill by 10%.

The strength and variability of the MJO index are subject

to forecast errors, increasing with lead time. The bias in

MJO strength was consistent across lead times. For longer

lead times (e.g., lead day 22), the forecast MJO indices

tend to become stronger in most verification months.

Overall, the one-way forcing ofGEFSwithmore realistic

SSTs slightly enhances the MJO skill. It is likely that the

cumulus scheme used in this GEFS version underestimates

the impacts of SST forcing on the MJO convection (Wang

et al. 2015). Along with the relatively weakMJO activity in

the observations, external intraseasonal SST forcing does

not significantly improve NA weather (2-m temperature

and accumulated precipitation) during this period. This

implies 1) an inherent predictability issue for NA weather

over theweeks 3 and4period and that futurework needs to

be performed 2) to improve the GEFS model as well as 3)

to improve boundary forcing predictions, such as those of

sea ice, snowpack, and soil moisture for a potential gain in

weeks 3 and 4 forecast skill.Also, observations indicate that

the fall of 2013 and the winter of 2013/14 had a generally

weakMJO. Future work will focus on a two-year span that

covers a stronger MJO period covering 1 May 2014–31

May 2016. This will provide further insight into the pre-

dictability from strong MJO events and their relationship

with 2-m temperature and CONUS accumulated pre-

cipitation from global teleconnections. In these experi-

ments, the potential impacts of higher resolution, stochastic

physics, and improving convection parameterization on the

MJO in the upgraded GEFS will be examined.
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APPENDIX A

SST Forcing Calculations

a. Operational GEFS SST forcing (CTL)

The GEFS v11 operational SST forcing uses a 90-day

e-folding time of the RTG analysis at initialization, re-

laxed to climatology, calculated as

SSTt
f 5 (SSTt0

a 2 SSTt0
c )e

(t2t0)/90 1 SSTt0
c ,

where f is the forecast, a is the analysis, c is climatology,

t is forecast lead time, and t0 is the initial time (in days).

b. Bias-corrected CFSv2-predicted SST forcing
(CFS_BC)

The CFS_BC SST forcing is a hybrid of a persisted

RTG anomaly at short lead times and bias-corrected

CFSv2-predicted SST at longer lead times. The CFSv2-

predicted SST is bias corrected using both the CFSR

climatology and CFSv2 model climatology. The per-

sisted RTG anomaly is linearly combined with the bias-

corrected CFSv2-predicted SST over the 35-day period,

calculated as

SSTt
f 5 (12w)(SSTt0

a 2 SST
t0
cfsrc 1 SSTt

cfsrc)

1w SSTt
cfs 2 (SSTt

cfs_c 2 SSTt
cfsrc)

h i
,

where f is the forecast, a is the analysis, cfsrc is the CFSR

reanalysis climatology, cfs is the CFS (24-h mean)

FIG. 13. MJO index for different lead times: (a) lead day 14 and

(b) lead day 21. A seven-point running mean is applied on the time

series to smooth the data. The numbers in the text box are the

variance of each experiment from the analysis for all initial times.
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forecast SST, cfs_c is the CFSv2 model climatology, t is

forecast lead time, t0 is the initial time, andw is defined as

w5 (t2 t
0
)/35.

APPENDIX B

Rank Probability Skill Score

The rank probability skill score (RPSS) measures the

improvement of a multicategory ensemble forecast rela-

tive to a reference forecast. It ranges from2‘ to 1 with a

score of 0 indicating it is no better than chance. Since it is a

squared error score, RPSS will penalize incorrect forecasts

madewith a higher forecast probabilitymore severely than

an incorrect forecast made with a lower forecast proba-

bility (the converse is true for correct forecasts).

For this study, three equal climatological bins (ter-

ciles) are defined for each variable. The RPSS is calcu-

lated as

RPSS5 12RPS
f
/RPS

c
,

where the forecast ranked probability score (RPSf ) is

calculated as

RPS
f
5

1

N
3�

N

k50

[(probB
n
2 obsB

n
)21(probN

n
2 obsN

n
)2

1 (probA
n
2 obsA

n
)2],

with n corresponding to each forecast–observation pair, N

are the total number of forecast–observation pairs, probXn

is the ranked cumulative forecast probability for each binX,

and obsXn is the ranked cumulative observation probability

for each bin X. The RPSf forecast probability is the pro-

portion of ensemble members in each bin. The reference

RPSc is calculated similarly, but the forecast probability is

set to 1/3 since each forecast bin is defined as being clima-

tologically equal. See Wilks 2011 or the Climate Prediction

Center website (http://www.cpc.ncep.noaa.gov/products/

verification/summary/index.php?page5tutorial) for more

information.
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